Use of FLAIR Imaging to Identify Onset Time of Cerebral Ischemia in a Canine Model

Editor’s Choice

February 2014

(2 of 3)

After an infarction-inducing procedure, 20 dogs were imaged at 3, 4, 5, 6, and 24 hours with FLAIR and DWI. A mismatch between the 2 sequences (positive DWI and negative FLAIR) was found to reliably predict the time of infarct onset. By 6 hours, 95% of dogs had FLAIR abnormalities and by 24 hours all did. However, at 3 hours only 15% of dogs showed positive FLAIR studies. These results could serve as guidelines to estimate the time of onset of ischemic events.

EIC signature


Stroke is a leading cause of death and disability, and many studies have focused on the evolution of FLAIR imaging in the acute and chronic time window. The purpose of this study was to evaluate the potential efficacy of FLAIR-related techniques in identifying the onset time of cerebral ischemia in a canine embolic stroke model.

An embolic ischemic model was generated through the use of an autologous clot in 20 beagle dogs. Both FLAIR and DWI were performed at 3 hours, 4 hours, 5 hours, 6 hours, and 24 hours after embolization, respectively. Visual “DWI-FLAIR mismatch” was defined as hyperintense signal detected on DWI but not on FLAIR. The relative signal intensity of FLAIR-positive lesions and the degree of DWI-FLAIR mismatch was calculated as relative FLAIR = relative signal intensity of FLAIR positive lesions, mismatch degree = (100−VFLAIR/VDWI) × 100%.

The ischemic model was successfully established in all animals. FLAIR-positive lesions were seen in 3, 11, 16, 19, and 20 beagle dogs at 5 time points after embolization, respectively. There was significant correlation between the relative FLAIR, degree of DWI-FLAIR mismatch, and the onset time (relative FLAIR: r = +0.42; 95% CI, 0.20–0.60; mismatch degree: r = −0.85; 95% CI, 0.89–0.78). Receiver operating characteristic curves showed that the degree of DWI-FLAIR mismatch could identify the hyperacute ischemic lesions with a sensitivity range from 1.00–0.76; visual DWI-FLAIR mismatch sensitivity ranged from 0.85–0.39, whereas specificity was 0.83–0.95 versus 0.85–1.00.

The relative FLAIR and DWI-FLAIR mismatch values were useful in predicting the onset time in our canine embolic stroke model. The degree of DWI-FLAIR mismatch proposed in our study could be a good indicator with high sensitivity for identifying the hyperacute ischemic stroke.

Full text

Use of FLAIR Imaging to Identify Onset Time of Cerebral Ischemia in a Canine Model
Mauricio Castillo • Univ of North Carolina

I am Division Chief of Neuroradiology at the University of North Carolina in Chapel Hill. In addition, I am a Professor of Radiology and the current Editor-in-Chief of the American Journal of Neuroradiology. I trained in Diagnostic Radiology at the University of Miami and was a Neuroradiology fellow at Emory University.