Differentiation between Treatment-Induced Necrosis and Recurrent Tumors in Patients with Metastatic Brain Tumors: Comparison among 11C-Methionine-PET, FDG-PET, MR Permeability Imaging, and MRI-ADC—Preliminary Results

Editor’s Choice

The authors evaluated the feasibility of MR permeability imaging by comparison with 11C-methionine-PET, FDG-PET, and DWI for differentiating radiation necrosis from recurrent tumors in 15 patients with 18 lesions following gamma knife radiosurgery. The area under the ROC curve for differentiating radiation necrosis from recurrent tumors was the best for the 11C-methionine ratio (0.90) followed by the contrast-enhancement ratio (0.81), maximum slope of increase (millimole/second) (0.80), and the initial area under the signal intensity–time curve (0.78). They conclude that PET using 11C-methionine may be superior to MR permeability imaging, ADC, and FDG-PET for differentiating radiation necrosis from recurrent tumors after gamma knife radiosurgery for metastatic brain tumors.

Abstract

Figure 3 from paper
A 78-year-old man with lung cancer. He underwent GK for a metastatic tumor in the isthmus of the left cingulate gyrus. T2WI (A) reveals a hyperintense area (arrows) with mild swelling in the isthmus of the left cingulate gyrus, and contrast-enhanced T1WI (B) shows ringlike contrast enhancement of the lesion (arrows) 12 months after GK. MR permeability images (C, CER; D, MaxSlope; E, IAUGC) do not show the increased value of each parameter in the lesion (white arrows). MET-PET/CT (F) also does not show any increased activity of MET in the lesion (white arrow). It was presumably diagnosed as radiation necrosis.

BACKGROUND AND PURPOSE

In patients with metastatic brain tumors after gamma knife radiosurgery, the superiority of PET using 11C-methionine for differentiating radiation necrosis and recurrent tumors has been accepted. To evaluate the feasibility of MR permeability imaging, it was compared with PET using 11C-methionine, FDG-PET, and DWI for differentiating radiation necrosis from recurrent tumors.

MATERIALS AND METHODS

The study analyzed 18 lesions from 15 patients with metastatic brain tumors who underwent gamma knife radiosurgery. Ten lesions were identified as recurrent tumors by an operation. In MR permeability imaging, the transfer constant between intra- and extravascular extracellular spaces (/minute), extravascular extracellular space, the transfer constant from the extravascular extracellular space to plasma (/minute), the initial area under the signal intensity–time curve, contrast-enhancement ratio, bolus arrival time (seconds), maximum slope of increase (millimole/second), and fractional plasma volume were calculated. ADC was also acquired. On both PET using 11C-methionine and FDG-PET, the ratio of the maximum standard uptake value of the lesion divided by the maximum standard uptake value of the symmetric site in the contralateral cerebral hemisphere was measured (11C-methionine ratio and FDG ratio, respectively). The receiver operating characteristic curve was used for analysis.

RESULTS

The area under the receiver operating characteristic curve for differentiating radiation necrosis from recurrent tumors was the best for the 11C-methionine ratio (0.90) followed by the contrast-enhancement ratio (0.81), maximum slope of increase (millimole/second) (0.80), the initial area under the signal intensity–time curve (0.78), fractional plasma volume (0.76), bolus arrival time (seconds) (0.76), the transfer constant between intra- and extravascular extracellular spaces (/minute) (0.74), extravascular extracellular space (0.68), minimum ADC (0.60), the transfer constant from the extravascular extracellular space to plasma (/minute) (0.55), and the FDG-ratio (0.53). A significant difference in the 11C-methionine ratio (P < .01), contrast-enhancement ratio (P < .01), maximum slope of increase (millimole/second) (P < .05), and the initial area under the signal intensity–time curve (P < .05) was evident between radiation necrosis and recurrent tumor.

CONCLUSIONS

The present study suggests that PET using 11C-methionine may be superior to MR permeability imaging, ADC, and FDG-PET for differentiating radiation necrosis from recurrent tumors after gamma knife radiosurgery for metastatic brain tumors.

 

Read this article: http://bit.ly/2w1G73O

Differentiation between Treatment-Induced Necrosis and Recurrent Tumors in Patients with Metastatic Brain Tumors: Comparison among 11C-Methionine-PET, FDG-PET, MR Permeability Imaging, and MRI-ADC—Preliminary Results
Tags:         
jross
Jeffrey Ross • Mayo Clinic, Phoenix

Dr. Jeffrey S. Ross is a Professor of Radiology at the Mayo Clinic College of Medicine, and practices neuroradiology at the Mayo Clinic in Phoenix, Arizona. His publications include over 100 peer-reviewed articles, nearly 60 non-refereed articles, 33 book chapters, and 10 books. He was an AJNR Senior Editor from 2006-2015, is a member of the editorial board for 3 other journals, and a manuscript reviewer for 10 journals. He became Editor-in-Chief of the AJNR in July 2015. He received the Gold Medal Award from the ASSR in 2013.